Papers
Topics
Authors
Recent
2000 character limit reached

Practical offloading for fine-tuning LLM on commodity GPU via learned sparse projectors (2406.10181v2)

Published 14 Jun 2024 in cs.DC and cs.AI

Abstract: Fine-tuning LLMs requires significant memory, often exceeding the capacity of a single GPU. A common solution to this memory challenge is offloading compute and data from the GPU to the CPU. However, this approach is hampered by the limited bandwidth of commodity hardware, which constrains communication between the CPU and GPU, and by slower matrix multiplications on the CPU. In this paper, we present an offloading framework, LSP-Offload, that enables near-native speed LLM fine-tuning on commodity hardware through learned sparse projectors. Our data-driven approach involves learning efficient sparse compressors that minimize communication with minimal precision loss. Additionally, we introduce a novel layer-wise communication schedule to maximize parallelism between communication and computation. As a result, our framework can fine-tune a 1.3 billion parameter model on a 4GB laptop GPU and a 6.7 billion parameter model on a 24GB NVIDIA RTX 4090 GPU. Compared to state-of-the-art offloading frameworks, our approach reduces end-to-end fine-tuning time by 33.1%-62.5% when converging to the same accuracy. We open source our framework at https://github.com/gulang2019/LSP-Offload.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.