Papers
Topics
Authors
Recent
2000 character limit reached

Know the Unknown: An Uncertainty-Sensitive Method for LLM Instruction Tuning (2406.10099v3)

Published 14 Jun 2024 in cs.CL

Abstract: LLMs demonstrate remarkable capabilities but face challenges from hallucinations, which typically arise from insufficient knowledge or context. While instructing LLMs to acknowledge knowledge limitations by responding with "I don't know" appears promising, we find that models consistently struggle with admitting knowledge gaps. This challenge may originate from current instruction datasets that emphasise answer generation over knowledge boundary awareness. To address this limitation, we introduce Uncertainty-and-Sensitivity-Aware Tuning (US-Tuning), a novel two-stage approach for contextual question answering (QA). The first stage enhances LLMs' ability to recognise their knowledge boundaries, while the second stage reinforces instruction adherence through carefully designed causal prompts. Our experimental results demonstrate that US-Tuning not only significantly reduces incorrect answers in contextual QA but also improves models' faithfulness to their parametric knowledge, mitigating hallucinations in general QA tasks. Our fine-tuned Llama2-7B model achieves up to a 34.7% improvement in handling out-of-knowledge questions and outperforms GPT-4 by 4.2% in overall performance.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.