Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Suppressing seizure via optimal electrical stimulation to the hub of epileptic brain network (2406.09989v1)

Published 14 Jun 2024 in q-bio.NC, cs.SY, and eess.SY

Abstract: The electrical stimulation to the seizure onset zone (SOZ) serves as an efficient approach to seizure suppression. Recently, seizure dynamics have gained widespread attendance in its network propagation mechanisms. Compared with the direct stimulation to SOZ, other brain network-level approaches that can effectively suppress epileptic seizures remain under-explored. In this study, we introduce a platform equipped with a system identification module and a control strategy module, to validate the effectiveness of the hub of the epileptic brain network in suppressing seizure. The identified surrogate dynamics show high predictive performance in reconstructing neural dynamics which enables the model predictive framework to achieve accurate neural stimulation. The electrical stimulation on the hub of the epileptic brain network shows remarkable performance as the direct stimulation of SOZ in suppressing seizure dynamics. Underpinned by network control theory, our platform offers a general tool for the validation of neural stimulation.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.