Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

HIRO: Hierarchical Information Retrieval Optimization (2406.09979v2)

Published 14 Jun 2024 in cs.CL, cs.AI, and cs.IR

Abstract: Retrieval-Augmented Generation (RAG) has revolutionized natural language processing by dynamically integrating external knowledge into LLMs, addressing their limitation of static training datasets. Recent implementations of RAG leverage hierarchical data structures, which organize documents at various levels of summarization and information density. This complexity, however, can cause LLMs to "choke" on information overload, necessitating more sophisticated querying mechanisms. In this context, we introduce Hierarchical Information Retrieval Optimization (HIRO), a novel querying approach that employs a Depth-First Search (DFS)-based recursive similarity score calculation and branch pruning. This method uniquely minimizes the context delivered to the LLM without informational loss, effectively managing the challenge of excessive data. HIRO's refined approach is validated by a 10.85% improvement in performance on the NarrativeQA dataset.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets