Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

DAG-Plan: Generating Directed Acyclic Dependency Graphs for Dual-Arm Cooperative Planning (2406.09953v3)

Published 14 Jun 2024 in cs.RO and cs.AI

Abstract: Dual-arm robots offer enhanced versatility and efficiency over single-arm counterparts by enabling concurrent manipulation of multiple objects or cooperative execution of tasks using both arms. However, the coordination of dual-arm systems for long-horizon tasks continues to pose significant challenges, stemming from the intricate temporal and spatial dependencies among sub-tasks, necessitating intelligent decisions regarding the allocation of actions between arms and their optimal execution order. Existing task planning methods predominantly focus on single-arm robots or rely on predefined bimanual operations to use LLMs generate task sequence with linear temporal dependency, failing to fully leverage the capabilities of dual-arm systems. To address this limitation, we introduce DAG-Plan, a structured task planning framework tailored for dual-arm robots. DAG-Plan harnesses LLMs to decompose intricate tasks into actionable sub-tasks represented as nodes within a directed acyclic graph (DAG). Critically, DAG-Plan dynamically assigns these sub-tasks to the appropriate arm based on real-time environmental observations, enabling parallel and adaptive execution. We evaluate DAG-Plan on the Dual-Arm Kitchen Benchmark, comprising 5 sequential tasks with 44 sub-tasks. Extensive experiments demonstrate the superiority of DAG-Plan over directly using LLM to generate linear task sequence, achieving 52.8% higher efficiency compared to the single-arm task planning and 48% higher success rate of the dual-arm task planning. Compared to iterative methods, DAG-Plan improving execution efficiency 84.1% due to its fewer query time. More demos and information are available on https://sites.google.com/view/dag-plan.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube