Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
98 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DAG-Plan: Generating Directed Acyclic Dependency Graphs for Dual-Arm Cooperative Planning (2406.09953v3)

Published 14 Jun 2024 in cs.RO and cs.AI

Abstract: Dual-arm robots offer enhanced versatility and efficiency over single-arm counterparts by enabling concurrent manipulation of multiple objects or cooperative execution of tasks using both arms. However, the coordination of dual-arm systems for long-horizon tasks continues to pose significant challenges, stemming from the intricate temporal and spatial dependencies among sub-tasks, necessitating intelligent decisions regarding the allocation of actions between arms and their optimal execution order. Existing task planning methods predominantly focus on single-arm robots or rely on predefined bimanual operations to use LLMs generate task sequence with linear temporal dependency, failing to fully leverage the capabilities of dual-arm systems. To address this limitation, we introduce DAG-Plan, a structured task planning framework tailored for dual-arm robots. DAG-Plan harnesses LLMs to decompose intricate tasks into actionable sub-tasks represented as nodes within a directed acyclic graph (DAG). Critically, DAG-Plan dynamically assigns these sub-tasks to the appropriate arm based on real-time environmental observations, enabling parallel and adaptive execution. We evaluate DAG-Plan on the Dual-Arm Kitchen Benchmark, comprising 5 sequential tasks with 44 sub-tasks. Extensive experiments demonstrate the superiority of DAG-Plan over directly using LLM to generate linear task sequence, achieving 52.8% higher efficiency compared to the single-arm task planning and 48% higher success rate of the dual-arm task planning. Compared to iterative methods, DAG-Plan improving execution efficiency 84.1% due to its fewer query time. More demos and information are available on https://sites.google.com/view/dag-plan.

Citations (5)

Summary

We haven't generated a summary for this paper yet.