Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Finite-Time Analysis of Simultaneous Double Q-learning (2406.09946v1)

Published 14 Jun 2024 in cs.LG, cs.SY, and eess.SY

Abstract: $Q$-learning is one of the most fundamental reinforcement learning (RL) algorithms. Despite its widespread success in various applications, it is prone to overestimation bias in the $Q$-learning update. To address this issue, double $Q$-learning employs two independent $Q$-estimators which are randomly selected and updated during the learning process. This paper proposes a modified double $Q$-learning, called simultaneous double $Q$-learning (SDQ), with its finite-time analysis. SDQ eliminates the need for random selection between the two $Q$-estimators, and this modification allows us to analyze double $Q$-learning through the lens of a novel switching system framework facilitating efficient finite-time analysis. Empirical studies demonstrate that SDQ converges faster than double $Q$-learning while retaining the ability to mitigate the maximization bias. Finally, we derive a finite-time expected error bound for SDQ.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets