Finite-Time Analysis of Simultaneous Double Q-learning (2406.09946v1)
Abstract: $Q$-learning is one of the most fundamental reinforcement learning (RL) algorithms. Despite its widespread success in various applications, it is prone to overestimation bias in the $Q$-learning update. To address this issue, double $Q$-learning employs two independent $Q$-estimators which are randomly selected and updated during the learning process. This paper proposes a modified double $Q$-learning, called simultaneous double $Q$-learning (SDQ), with its finite-time analysis. SDQ eliminates the need for random selection between the two $Q$-estimators, and this modification allows us to analyze double $Q$-learning through the lens of a novel switching system framework facilitating efficient finite-time analysis. Empirical studies demonstrate that SDQ converges faster than double $Q$-learning while retaining the ability to mitigate the maximization bias. Finally, we derive a finite-time expected error bound for SDQ.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.