Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Label-Efficient Semantic Segmentation of LiDAR Point Clouds in Adverse Weather Conditions (2406.09906v1)

Published 14 Jun 2024 in cs.CV

Abstract: Adverse weather conditions can severely affect the performance of LiDAR sensors by introducing unwanted noise in the measurements. Therefore, differentiating between noise and valid points is crucial for the reliable use of these sensors. Current approaches for detecting adverse weather points require large amounts of labeled data, which can be difficult and expensive to obtain. This paper proposes a label-efficient approach to segment LiDAR point clouds in adverse weather. We develop a framework that uses few-shot semantic segmentation to learn to segment adverse weather points from only a few labeled examples. Then, we use a semi-supervised learning approach to generate pseudo-labels for unlabelled point clouds, significantly increasing the amount of training data without requiring any additional labeling. We also integrate good weather data in our training pipeline, allowing for high performance in both good and adverse weather conditions. Results on real and synthetic datasets show that our method performs well in detecting snow, fog, and spray. Furthermore, we achieve competitive performance against fully supervised methods while using only a fraction of labeled data.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com
Youtube Logo Streamline Icon: https://streamlinehq.com