Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Benchmarking Generative Models on Computational Thinking Tests in Elementary Visual Programming (2406.09891v2)

Published 14 Jun 2024 in cs.AI

Abstract: Generative models have demonstrated human-level proficiency in various benchmarks across domains like programming, natural sciences, and general knowledge. Despite these promising results on competitive benchmarks, they still struggle with seemingly simple problem-solving tasks typically carried out by elementary-level students. How do state-of-the-art models perform on standardized programming-related tests designed to assess computational thinking and problem-solving skills at schools? In this paper, we curate a novel benchmark involving computational thinking tests grounded in elementary visual programming domains. Our initial results show that state-of-the-art models like GPT-4o and Llama3 barely match the performance of an average school student. To further boost the performance of these models, we fine-tune them using a novel synthetic data generation methodology. The key idea is to develop a comprehensive dataset using symbolic methods that capture different skill levels, ranging from recognition of visual elements to multi-choice quizzes to synthesis-style tasks. We showcase how various aspects of symbolic information in synthetic data help improve fine-tuned models' performance. We will release the full implementation and datasets to facilitate further research on enhancing computational thinking in generative models.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets