Papers
Topics
Authors
Recent
2000 character limit reached

MMM: Multi-Layer Multi-Residual Multi-Stream Discrete Speech Representation from Self-supervised Learning Model (2406.09869v1)

Published 14 Jun 2024 in cs.SD and eess.AS

Abstract: Speech discrete representation has proven effective in various downstream applications due to its superior compression rate of the waveform, fast convergence during training, and compatibility with other modalities. Discrete units extracted from self-supervised learning (SSL) models have emerged as a prominent approach for obtaining speech discrete representation. However, while discrete units have shown effectiveness compared to spectral features, they still lag behind continuous SSL representations. In this work, we propose MMM, a multi-layer multi-residual multi-stream discrete units extraction method from SSL. Specifically, we introduce iterative residual vector quantization with K-means for different layers in an SSL model to extract multi-stream speech discrete representation. Through extensive experiments in speech recognition, speech resynthesis, and text-to-speech, we demonstrate the proposed MMM can surpass or on-par with neural codec's performance under various conditions.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.