Papers
Topics
Authors
Recent
2000 character limit reached

Rethinking the Evaluation of Out-of-Distribution Detection: A Sorites Paradox (2406.09867v3)

Published 14 Jun 2024 in cs.CV

Abstract: Most existing out-of-distribution (OOD) detection benchmarks classify samples with novel labels as the OOD data. However, some marginal OOD samples actually have close semantic contents to the in-distribution (ID) sample, which makes determining the OOD sample a Sorites Paradox. In this paper, we construct a benchmark named Incremental Shift OOD (IS-OOD) to address the issue, in which we divide the test samples into subsets with different semantic and covariate shift degrees relative to the ID dataset. The data division is achieved through a shift measuring method based on our proposed Language Aligned Image feature Decomposition (LAID). Moreover, we construct a Synthetic Incremental Shift (Syn-IS) dataset that contains high-quality generated images with more diverse covariate contents to complement the IS-OOD benchmark. We evaluate current OOD detection methods on our benchmark and find several important insights: (1) The performance of most OOD detection methods significantly improves as the semantic shift increases; (2) Some methods like GradNorm may have different OOD detection mechanisms as they rely less on semantic shifts to make decisions; (3) Excessive covariate shifts in the image are also likely to be considered as OOD for some methods. Our code and data are released in https://github.com/qqwsad5/IS-OOD.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com
X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.

Youtube Logo Streamline Icon: https://streamlinehq.com