Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

SuperSVG: Superpixel-based Scalable Vector Graphics Synthesis (2406.09794v1)

Published 14 Jun 2024 in cs.CV

Abstract: SVG (Scalable Vector Graphics) is a widely used graphics format that possesses excellent scalability and editability. Image vectorization, which aims to convert raster images to SVGs, is an important yet challenging problem in computer vision and graphics. Existing image vectorization methods either suffer from low reconstruction accuracy for complex images or require long computation time. To address this issue, we propose SuperSVG, a superpixel-based vectorization model that achieves fast and high-precision image vectorization. Specifically, we decompose the input image into superpixels to help the model focus on areas with similar colors and textures. Then, we propose a two-stage self-training framework, where a coarse-stage model is employed to reconstruct the main structure and a refinement-stage model is used for enriching the details. Moreover, we propose a novel dynamic path warping loss to help the refinement-stage model to inherit knowledge from the coarse-stage model. Extensive qualitative and quantitative experiments demonstrate the superior performance of our method in terms of reconstruction accuracy and inference time compared to state-of-the-art approaches. The code is available in \url{https://github.com/sjtuplayer/SuperSVG}.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com
X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: