Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Self-supervised Monocular Depth Estimation Based on Hierarchical Feature-Guided Diffusion (2406.09782v2)

Published 14 Jun 2024 in cs.CV

Abstract: Self-supervised monocular depth estimation has received widespread attention because of its capability to train without ground truth. In real-world scenarios, the images may be blurry or noisy due to the influence of weather conditions and inherent limitations of the camera. Therefore, it is particularly important to develop a robust depth estimation model. Benefiting from the training strategies of generative networks, generative-based methods often exhibit enhanced robustness. In light of this, we employ the generative-based diffusion model with a unique denoising training process for self-supervised monocular depth estimation. Additionally, to further enhance the robustness of the diffusion model, we probe into the influence of perturbations on image features and propose a hierarchical feature-guided denoising module. Furthermore, we explore the implicit depth within reprojection and design an implicit depth consistency loss. This loss function is not interfered by the other subnetwork, which can be targeted to constrain the depth estimation network and ensure the scale consistency of depth within a video sequence. We conduct experiments on the KITTI and Make3D datasets. The results indicate that our approach stands out among generative-based models, while also showcasing remarkable robustness.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube