Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data-Driven Strategy Synthesis for Stochastic Systems with Unknown Nonlinear Disturbances (2406.09704v1)

Published 14 Jun 2024 in eess.SY and cs.SY

Abstract: In this paper, we introduce a data-driven framework for synthesis of provably-correct controllers for general nonlinear switched systems under complex specifications. The focus is on systems with unknown disturbances whose effects on the dynamics of the system is nonlinear. The specifications are assumed to be given as linear temporal logic over finite traces (LTLf) formulas. Starting from observations of either the disturbance or the state of the system, we first learn an ambiguity set that contains the unknown distribution of the disturbances with a user-defined confidence. Next, we construct a robust Markov decision process (RMDP) as a finite abstraction of the system. By composing the RMDP with the automaton obtained from the LTLf formula and performing optimal robust value iteration on the composed RMDP, we synthesize a strategy that yields a high probability that the uncertain system satisfies the specifications. Our empirical evaluations on systems with a wide variety of disturbances show that the strategies synthesized with our approach lead to high satisfaction probabilities and validate the theoretical guarantees.

Summary

We haven't generated a summary for this paper yet.