SViTT-Ego: A Sparse Video-Text Transformer for Egocentric Video (2406.09462v1)
Abstract: Pretraining egocentric vision-LLMs has become essential to improving downstream egocentric video-text tasks. These egocentric foundation models commonly use the transformer architecture. The memory footprint of these models during pretraining can be substantial. Therefore, we pretrain SViTT-Ego, the first sparse egocentric video-text transformer model integrating edge and node sparsification. We pretrain on the EgoClip dataset and incorporate the egocentric-friendly objective EgoNCE, instead of the frequently used InfoNCE. Most notably, SViTT-Ego obtains a +2.8% gain on EgoMCQ (intra-video) accuracy compared to LAVILA large, with no additional data augmentation techniques other than standard image augmentations, yet pretrainable on memory-limited devices.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.