Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 163 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 42 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Learning the Influence Graph of a High-Dimensional Markov Process with Memory (2406.09338v1)

Published 13 Jun 2024 in cs.LG and eess.SP

Abstract: Motivated by multiple applications in social networks, nervous systems, and financial risk analysis, we consider the problem of learning the underlying (directed) influence graph or causal graph of a high-dimensional multivariate discrete-time Markov process with memory. At any discrete time instant, each observed variable of the multivariate process is a binary string of random length, which is parameterized by an unobservable or hidden [0,1]-valued scalar. The hidden scalars corresponding to the variables evolve according to discrete-time linear stochastic dynamics dictated by the underlying influence graph whose nodes are the variables. We extend an existing algorithm for learning i.i.d. graphical models to this Markovian setting with memory and prove that it can learn the influence graph based on the binary observations using logarithmic (in number of variables or nodes) samples when the degree of the influence graph is bounded. The crucial analytical contribution of this work is the derivation of the sample complexity result by upper and lower bounding the rate of convergence of the observed Markov process with memory to its stationary distribution in terms of the parameters of the influence graph.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.