Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ProxyLM: Predicting Language Model Performance on Multilingual Tasks via Proxy Models (2406.09334v3)

Published 13 Jun 2024 in cs.CL

Abstract: Performance prediction is a method to estimate the performance of LLMs (LMs) on various NLP tasks, mitigating computational costs associated with model capacity and data for fine-tuning. Our paper presents ProxyLM, a scalable task- and language-agnostic framework designed to predict the performance of LMs using proxy models. These proxy models act as surrogates, approximating the performance of the LM of interest. By leveraging these proxy models, ProxyLM significantly reduces computational overhead in task evaluations, achieving up to a 37.08x speedup over traditional methods, even with our smallest proxy models. Our results across multiple multilingual NLP tasks and various robustness tests demonstrate that ProxyLM not only adapts well to previously unseen languages in pre-trained LMs, but also generalizes effectively across different datasets, outperforming the state-of-the-art by at least 1.78x in terms of root-mean-square error (RMSE).

Citations (6)

Summary

We haven't generated a summary for this paper yet.