Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Neural networks in non-metric spaces (2406.09310v1)

Published 13 Jun 2024 in math.FA and cs.LG

Abstract: Leveraging the infinite dimensional neural network architecture we proposed in arXiv:2109.13512v4 and which can process inputs from Fr\'echet spaces, and using the universal approximation property shown therein, we now largely extend the scope of this architecture by proving several universal approximation theorems for a vast class of input and output spaces. More precisely, the input space $\mathfrak X$ is allowed to be a general topological space satisfying only a mild condition ("quasi-Polish"), and the output space can be either another quasi-Polish space $\mathfrak Y$ or a topological vector space $E$. Similarly to arXiv:2109.13512v4, we show furthermore that our neural network architectures can be projected down to "finite dimensional" subspaces with any desirable accuracy, thus obtaining approximating networks that are easy to implement and allow for fast computation and fitting. The resulting neural network architecture is therefore applicable for prediction tasks based on functional data. To the best of our knowledge, this is the first result which deals with such a wide class of input/output spaces and simultaneously guarantees the numerical feasibility of the ensuing architectures. Finally, we prove an obstruction result which indicates that the category of quasi-Polish spaces is in a certain sense the correct category to work with if one aims at constructing approximating architectures on infinite-dimensional spaces $\mathfrak X$ which, at the same time, have sufficient expressive power to approximate continuous functions on $\mathfrak X$, are specified by a finite number of parameters only and are "stable" with respect to these parameters.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube