Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

An Efficient Post-hoc Framework for Reducing Task Discrepancy of Text Encoders for Composed Image Retrieval (2406.09188v2)

Published 13 Jun 2024 in cs.CV and cs.IR

Abstract: Composed Image Retrieval (CIR) aims to retrieve a target image based on a reference image and conditioning text, enabling controllable image searches. The mainstream Zero-Shot (ZS) CIR methods bypass the need for expensive training CIR triplets by projecting image embeddings into the text token embedding space, forming a composed query for retrieval. However, we highlight an inherent limitation in these projection-based CIR: a task discrepancy of text encoders between the original pre-training task of the encoders (text $\leftrightarrow$ image) and the target CIR task (image + text $\leftrightarrow$ image), which potentially negatively impacts CIR performance. To reduce such a discrepancy, a naive solution would be to train both image and text encoders with CIR triplets in a supervised manner. Instead, we introduce Reducing Task Discrepancy of Text Encoders (RTD), an efficient text-only post-hoc framework that complements projection-based CIR methods. We devise a novel target-anchored text contrastive learning designed to enhance the capability of the text encoder for CIR. We also propose two key enhancements: (1) a hard negative-based refined batch sampling strategy and (2) a refined concatenation scheme to further mitigate training-inference discrepancy. Integrating RTD into state-of-the-art projection-based methods achieves performance comparable to, or even surpassing, resource-intensive state-of-the-art synthetic CIR triplet-based approaches only with 23 minutes of additional training on 4 A100 GPUs (up to $100\times$ faster in training). Our code will be available upon acceptance.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.