Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 143 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

MMRel: A Relation Understanding Benchmark in the MLLM Era (2406.09121v2)

Published 13 Jun 2024 in cs.CV

Abstract: Though Multi-modal LLMs (MLLMs) have recently achieved significant progress, they often face various problems while handling inter-object relations, i.e., the interaction or association among distinct objects. This constraint largely stems from insufficient training and evaluation data for relation understanding, which has greatly impeded MLLMs in various vision-language generation and reasoning tasks. We attempt to address this challenge by introducing Multi-Modal Relation Understanding (MMRel), a benchmark that features large-scale, high-quality, and diverse data on inter-object relations. MMRel features three distinctive attributes: (i) It contains over 22K question-answer pairs, spanning three distinct domains and covering three relation categories, ensuring both scale and diversity; (ii) it provides manually verified, high-quality labels to ensure exceptional annotation accuracy; (iii) it includes adversarial cases with highly unusual relations, offering a challenging setting for evaluating relation hallucination. These features make MMRel ideal for evaluating MLLMs on relation understanding, as well as for fine-tuning MLLMs to enhance relation comprehension capability. Extensive experiments verify the effectiveness of MMRel in evaluating and enhancing MLLMs' relation understanding capabilities. The benchmark has been released publicly at: https://niejiahao1998.github.io/MMRel/

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: