PC-LoRA: Low-Rank Adaptation for Progressive Model Compression with Knowledge Distillation (2406.09117v1)
Abstract: Low-rank adaption (LoRA) is a prominent method that adds a small number of learnable parameters to the frozen pre-trained weights for parameter-efficient fine-tuning. Prompted by the question, ``Can we make its representation enough with LoRA weights solely at the final phase of finetuning without the pre-trained weights?'' In this work, we introduce Progressive Compression LoRA~(PC-LoRA), which utilizes low-rank adaptation (LoRA) to simultaneously perform model compression and fine-tuning. The PC-LoRA method gradually removes the pre-trained weights during the training process, eventually leaving only the low-rank adapters in the end. Thus, these low-rank adapters replace the whole pre-trained weights, achieving the goals of compression and fine-tuning at the same time. Empirical analysis across various models demonstrates that PC-LoRA achieves parameter and FLOPs compression rates of 94.36%/89.1% for vision models, e.g., ViT-B, and 93.42%/84.2% parameters and FLOPs compressions for LLMs, e.g., BERT.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.