Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Operator-Informed Score Matching for Markov Diffusion Models (2406.09084v2)

Published 13 Jun 2024 in stat.ML and cs.LG

Abstract: Diffusion models are typically trained using score matching, a learning objective agnostic to the underlying noising process that guides the model. This paper argues that Markov noising processes enjoy an advantage over alternatives, as the Markov operators that govern the noising process are well-understood. Specifically, by leveraging the spectral decomposition of the infinitesimal generator of the Markov noising process, we obtain parametric estimates of the score functions simultaneously for all marginal distributions, using only sample averages with respect to the data distribution. The resulting operator-informed score matching provides both a standalone approach to sample generation for low-dimensional distributions, as well as a recipe for better informed neural score estimators in high-dimensional settings.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets