Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 183 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 221 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Operator-Informed Score Matching for Markov Diffusion Models (2406.09084v2)

Published 13 Jun 2024 in stat.ML and cs.LG

Abstract: Diffusion models are typically trained using score matching, a learning objective agnostic to the underlying noising process that guides the model. This paper argues that Markov noising processes enjoy an advantage over alternatives, as the Markov operators that govern the noising process are well-understood. Specifically, by leveraging the spectral decomposition of the infinitesimal generator of the Markov noising process, we obtain parametric estimates of the score functions simultaneously for all marginal distributions, using only sample averages with respect to the data distribution. The resulting operator-informed score matching provides both a standalone approach to sample generation for low-dimensional distributions, as well as a recipe for better informed neural score estimators in high-dimensional settings.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 10 likes.

Upgrade to Pro to view all of the tweets about this paper: