Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

ONNX-to-Hardware Design Flow for Adaptive Neural-Network Inference on FPGAs (2406.09078v1)

Published 13 Jun 2024 in cs.AR

Abstract: The challenges involved in executing neural networks (NNs) at the edge include providing diversity, flexibility, and sustainability. That implies, for instance, supporting evolving applications and algorithms energy-efficiently. Using hardware or software accelerators can deliver fast and efficient computation of the NNs, while flexibility can be exploited to support long-term adaptivity. Nonetheless, handcrafting an NN for a specific device, despite the possibility of leading to an optimal solution, takes time and experience, and that's why frameworks for hardware accelerators are being developed. This work, starting from a preliminary semi-integrated ONNX-to-hardware toolchain [21], focuses on enabling approximate computing leveraging the distinctive ability of the original toolchain to favor adaptivity. The goal is to allow lightweight adaptable NN inference on FPGAs at the edge.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.