Papers
Topics
Authors
Recent
2000 character limit reached

Meta-Learning an Evolvable Developmental Encoding (2406.09020v2)

Published 13 Jun 2024 in cs.NE

Abstract: Representations for black-box optimisation methods (such as evolutionary algorithms) are traditionally constructed using a delicate manual process. This is in contrast to the representation that maps DNAs to phenotypes in biological organisms, which is at the hear of biological complexity and evolvability. Additionally, the core of this process is fundamentally the same across nearly all forms of life, reflecting their shared evolutionary origin. Generative models have shown promise in being learnable representations for black-box optimisation but they are not per se designed to be easily searchable. Here we present a system that can meta-learn such representation by directly optimising for a representation's ability to generate quality-diversity. In more detail, we show our meta-learning approach can find one Neural Cellular Automata, in which cells can attend to different parts of a "DNA" string genome during development, enabling it to grow different solvable 2D maze structures. We show that the evolved genotype-to-phenotype mappings become more and more evolvable, not only resulting in a faster search but also increasing the quality and diversity of grown artefacts.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We found no open problems mentioned in this paper.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 3 tweets with 36 likes about this paper.