Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

LLM Reading Tea Leaves: Automatically Evaluating Topic Models with Large Language Models (2406.09008v2)

Published 13 Jun 2024 in cs.CL

Abstract: Topic modeling has been a widely used tool for unsupervised text analysis. However, comprehensive evaluations of a topic model remain challenging. Existing evaluation methods are either less comparable across different models (e.g., perplexity) or focus on only one specific aspect of a model (e.g., topic quality or document representation quality) at a time, which is insufficient to reflect the overall model performance. In this paper, we propose WALM (Word Agreement with LLM), a new evaluation method for topic modeling that considers the semantic quality of document representations and topics in a joint manner, leveraging the power of LLMs. With extensive experiments involving different types of topic models, WALM is shown to align with human judgment and can serve as a complementary evaluation method to the existing ones, bringing a new perspective to topic modeling. Our software package is available at https://github.com/Xiaohao-Yang/Topic_Model_Evaluation.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: