Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

SingOMD: Singing Oriented Multi-resolution Discrete Representation Construction from Speech Models (2406.08905v2)

Published 13 Jun 2024 in cs.SD and eess.AS

Abstract: Discrete representation has shown advantages in speech generation tasks, wherein discrete tokens are derived by discretizing hidden features from self-supervised learning (SSL) pre-trained models. However, the direct application of speech SSL models to singing generation encounters domain gaps between speech and singing. Furthermore, singing generation necessitates a more refined representation than typical speech. To address these challenges, we introduce SingOMD, a novel method to extract singing-oriented multi-resolution discrete representations from speech SSL models. Specifically, we first adapt the features from speech SSL through a resynthesis task and incorporate multi-resolution modules based on resampling to better serve singing generation. These adapted multi-resolution features are then discretized via clustering. Extensive experiments demonstrate the robustness, efficiency, and effectiveness of these representations in singing vocoders and singing voice synthesis.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com