Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

ESND: An Embedding-based Framework for Signed Network Dismantling (2406.08899v2)

Published 13 Jun 2024 in physics.soc-ph and cs.SI

Abstract: Network dismantling aims to maximize the disintegration of a network by removing a specific set of nodes or edges and is applied to various tasks in diverse domains, such as cracking down on crime organizations, delaying the propagation of rumors, and blocking the transmission of viruses. Most of the current network dismantling methods are tailored for unsigned networks, which only consider the connection between nodes without evaluating the nature of the relationships, such as friendship/hostility, enhancing/repressing, and trust/distrust. We here propose an embedding-based algorithm, namely ESND, to solve the signed network dismantling problem. The algorithm generally iterates the following four steps, i.e., giant component detection, network embedding, node clustering, and removal node selection. To illustrate the efficacy and stability of ESND, we conduct extensive experiments on six signed network datasets as well as null models, and compare the performance of our method with baselines. Experimental results consistently show that the proposed ESND is superior to the baselines and displays stable performance with the change in the network structure. Additionally, we examine the impact of sign proportions on network robustness via ESND, observing that networks with a high ratio of negative edges are generally easier to dismantle than networks with high positive edges.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.