Papers
Topics
Authors
Recent
2000 character limit reached

Strong asymptotic convergence of a slowly damped inertial primal-dual dynamical system controlled by a Tikhonov regularization term

Published 13 Jun 2024 in math.OC | (2406.08836v3)

Abstract: We propose a slowly damped inertial primal-dual dynamical system controlled by a Tikhonov regularization term, where the inertial term is introduced only for the primal variable, for the linearly constrained convex optimization problem in a Hilbert space. Under mild conditions on the underlying parameters, by a Lyapunov analysis approach, we prove the strong asymptotic convergence of the trajectory of the proposed dynamic to the minimal norm element of the primal-dual solution set of the problem, along with convergence rate results for the primal-dual gap, the objective residual and the feasibility violation. We perform some numerical experiments to illustrate the theoretical findings.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.