Papers
Topics
Authors
Recent
2000 character limit reached

Optimizing Large Model Training through Overlapped Activation Recomputation (2406.08756v4)

Published 13 Jun 2024 in cs.DC and cs.LG

Abstract: Large model training often uses recomputation to alleviate memory pressure and pipelines to exploit the parallelism of data, tensors, and devices. However, existing recomputation approaches may incur high overhead when training real-world models, as they are executed on demand in the critical training path. In this paper, we present Lynx, a new recomputation framework to reduce overhead by overlapping recomputation with communication in training pipelines. To reduce the large search space for recomputation strategies, we propose a heuristic-based recomputation scheduling algorithm, which is based on the observation that there are identical structures in large DNN models so that we can apply the same scheduling policy to all such structures. Additionally, we propose a recomputation-aware model partitioning method to balance each stage's execution time for improved training throughput. Our comprehensive evaluation using GPT models with 1.3B-23B parameters shows that Lynx outperforms existing recomputation approaches by up to 1.37x.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 0 likes about this paper.