Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 133 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

When LLM Meets DRL: Advancing Jailbreaking Efficiency via DRL-guided Search (2406.08705v4)

Published 13 Jun 2024 in cs.CR

Abstract: Recent studies developed jailbreaking attacks, which construct jailbreaking prompts to fool LLMs into responding to harmful questions. Early-stage jailbreaking attacks require access to model internals or significant human efforts. More advanced attacks utilize genetic algorithms for automatic and black-box attacks. However, the random nature of genetic algorithms significantly limits the effectiveness of these attacks. In this paper, we propose RLbreaker, a black-box jailbreaking attack driven by deep reinforcement learning (DRL). We model jailbreaking as a search problem and design an RL agent to guide the search, which is more effective and has less randomness than stochastic search, such as genetic algorithms. Specifically, we design a customized DRL system for the jailbreaking problem, including a novel reward function and a customized proximal policy optimization (PPO) algorithm. Through extensive experiments, we demonstrate that RLbreaker is much more effective than existing jailbreaking attacks against six state-of-the-art (SOTA) LLMs. We also show that RLbreaker is robust against three SOTA defenses and its trained agents can transfer across different LLMs. We further validate the key design choices of RLbreaker via a comprehensive ablation study.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 2 likes.

Upgrade to Pro to view all of the tweets about this paper: