Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

On Security Weaknesses and Vulnerabilities in Deep Learning Systems (2406.08688v1)

Published 12 Jun 2024 in cs.SE and cs.AI

Abstract: The security guarantee of AI-enabled software systems (particularly using deep learning techniques as a functional core) is pivotal against the adversarial attacks exploiting software vulnerabilities. However, little attention has been paid to a systematic investigation of vulnerabilities in such systems. A common situation learned from the open source software community is that deep learning engineers frequently integrate off-the-shelf or open-source learning frameworks into their ecosystems. In this work, we specifically look into deep learning (DL) framework and perform the first systematic study of vulnerabilities in DL systems through a comprehensive analysis of identified vulnerabilities from Common Vulnerabilities and Exposures (CVE) and open-source DL tools, including TensorFlow, Caffe, OpenCV, Keras, and PyTorch. We propose a two-stream data analysis framework to explore vulnerability patterns from various databases. We investigate the unique DL frameworks and libraries development ecosystems that appear to be decentralized and fragmented. By revisiting the Common Weakness Enumeration (CWE) List, which provides the traditional software vulnerability related practices, we observed that it is more challenging to detect and fix the vulnerabilities throughout the DL systems lifecycle. Moreover, we conducted a large-scale empirical study of 3,049 DL vulnerabilities to better understand the patterns of vulnerability and the challenges in fixing them. We have released the full replication package at https://github.com/codelzz/Vulnerabilities4DLSystem. We anticipate that our study can advance the development of secure DL systems.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com