Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 28 tok/s Pro
2000 character limit reached

Approximating Maximum Matching Requires Almost Quadratic Time (2406.08595v1)

Published 12 Jun 2024 in cs.DS

Abstract: We study algorithms for estimating the size of maximum matching. This problem has been subject to extensive research. For $n$-vertex graphs, Bhattacharya, Kiss, and Saranurak FOCS'23 showed that an estimate that is within $\varepsilon n$ of the optimal solution can be achieved in $n{2-\Omega_\varepsilon(1)}$ time, where $n$ is the number of vertices. While this is subquadratic in $n$ for any fixed $\varepsilon > 0$, it gets closer and closer to the trivial $\Theta(n2)$ time algorithm that reads the entire input as $\varepsilon$ is made smaller and smaller. In this work, we close this gap and show that the algorithm of BKS is close to optimal. In particular, we prove that for any fixed $\delta > 0$, there is another fixed $\varepsilon = \varepsilon(\delta) > 0$ such that estimating the size of maximum matching within an additive error of $\varepsilon n$ requires $\Omega(n{2-\delta})$ time in the adjacency list model.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.