Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Towards Musically Informed Evaluation of Piano Transcription Models (2406.08454v3)

Published 12 Jun 2024 in cs.SD and eess.AS

Abstract: Automatic piano transcription models are typically evaluated using simple frame- or note-wise information retrieval (IR) metrics. Such benchmark metrics do not provide insights into the transcription quality of specific musical aspects such as articulation, dynamics, or rhythmic precision of the output, which are essential in the context of expressive performance analysis. Furthermore, in recent years, MAESTRO has become the de-facto training and evaluation dataset for such models. However, inference performance has been observed to deteriorate substantially when applied on out-of-distribution data, thereby questioning the suitability and reliability of transcribed outputs from such models for specific MIR tasks. In this work, we investigate the performance of three state-of-the-art piano transcription models in two experiments. In the first one, we propose a variety of musically informed evaluation metrics which, in contrast to the IR metrics, offer more detailed insight into the musical quality of the transcriptions. In the second experiment, we compare inference performance on real-world and perturbed audio recordings, and highlight musical dimensions which our metrics can help explain. Our experimental results highlight the weaknesses of existing piano transcription metrics and contribute to a more musically sound error analysis of transcription outputs.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: