Papers
Topics
Authors
Recent
2000 character limit reached

A Software Engineering Perspective on Testing Large Language Models: Research, Practice, Tools and Benchmarks

Published 12 Jun 2024 in cs.SE | (2406.08216v1)

Abstract: LLMs are rapidly becoming ubiquitous both as stand-alone tools and as components of current and future software systems. To enable usage of LLMs in the high-stake or safety-critical systems of 2030, they need to undergo rigorous testing. Software Engineering (SE) research on testing Machine Learning (ML) components and ML-based systems has systematically explored many topics such as test input generation and robustness. We believe knowledge about tools, benchmarks, research and practitioner views related to LLM testing needs to be similarly organized. To this end, we present a taxonomy of LLM testing topics and conduct preliminary studies of state of the art and practice approaches to research, open-source tools and benchmarks for LLM testing, mapping results onto this taxonomy. Our goal is to identify gaps requiring more research and engineering effort and inspire a clearer communication between LLM practitioners and the SE research community.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 21 likes about this paper.