Papers
Topics
Authors
Recent
2000 character limit reached

Graph Transductive Defense: a Two-Stage Defense for Graph Membership Inference Attacks (2406.07917v1)

Published 12 Jun 2024 in cs.LG and cs.AI

Abstract: Graph neural networks (GNNs) have become instrumental in diverse real-world applications, offering powerful graph learning capabilities for tasks such as social networks and medical data analysis. Despite their successes, GNNs are vulnerable to adversarial attacks, including membership inference attacks (MIA), which threaten privacy by identifying whether a record was part of the model's training data. While existing research has explored MIA in GNNs under graph inductive learning settings, the more common and challenging graph transductive learning setting remains understudied in this context. This paper addresses this gap and proposes an effective two-stage defense, Graph Transductive Defense (GTD), tailored to graph transductive learning characteristics. The gist of our approach is a combination of a train-test alternate training schedule and flattening strategy, which successfully reduces the difference between the training and testing loss distributions. Extensive empirical results demonstrate the superior performance of our method (a decrease in attack AUROC by $9.42\%$ and an increase in utility performance by $18.08\%$ on average compared to LBP), highlighting its potential for seamless integration into various classification models with minimal overhead.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.