Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Guiding Frame-Level CTC Alignments Using Self-knowledge Distillation (2406.07909v1)

Published 12 Jun 2024 in eess.AS, cs.CL, cs.SD, and stat.ML

Abstract: Transformer encoder with connectionist temporal classification (CTC) framework is widely used for automatic speech recognition (ASR). However, knowledge distillation (KD) for ASR displays a problem of disagreement between teacher-student models in frame-level alignment which ultimately hinders it from improving the student model's performance. In order to resolve this problem, this paper introduces a self-knowledge distillation (SKD) method that guides the frame-level alignment during the training time. In contrast to the conventional method using separate teacher and student models, this study introduces a simple and effective method sharing encoder layers and applying the sub-model as the student model. Overall, our approach is effective in improving both the resource efficiency as well as performance. We also conducted an experimental analysis of the spike timings to illustrate that the proposed method improves performance by reducing the alignment disagreement.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.