Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Relations between monotone complexity measures based on decision tree complexity (2406.07859v2)

Published 12 Jun 2024 in cs.CC and cs.DM

Abstract: In a recent result, Knop, Lovett, McGuire and Yuan (STOC 2021) proved the log-rank conjecture for communication complexity, up to log n factor, for any Boolean function composed with AND function as the inner gadget. One of the main tools in this result was the relationship between monotone analogues of well-studied Boolean complexity measures like block sensitivity and certificate complexity. The relationship between the standard measures has been a long line of research, with a landmark result by Huang (Annals of Mathematics 2019), finally showing that sensitivity is polynomially related to all other standard measures. In this article, we study the monotone analogues of standard measures like block sensitivity (mbs(f)), certificate complexity (MCC(f)) and fractional block sensitivity (fmbs(f)); and study the relationship between these measures given their connection with AND-decision tree and sparsity of a Boolean function. We show the following results: 1) Given a Boolean function $f : {0, 1}{n} \rightarrow {0, 1}$, the ratio $fmbs(fl )/mbs(fl )$ is bounded by a function of n (and not l). A similar result was known for the corresponding standard measures (Tal, ITCS 2013). This result allows us to extend any upper bound by a well behaved measure on monotone block sensitivity to monotone fractional block sensitivity. 2) The question of the best possible upper bound on monotone block sensitivity by the logarithm of sparsity is equivalent to the natural question of best upper bound by degree on sensitivity. One side of this relationship was used in the proof by Knop, Lovett, McGuire and Yuan (STOC 2021). 3) For two natural classes of functions, symmetric and monotone, hitting set complexity (MCC) is equal to monotone sensitivity.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com