Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Dual-Pipeline with Low-Rank Adaptation for New Language Integration in Multilingual ASR (2406.07842v1)

Published 12 Jun 2024 in eess.AS and cs.CL

Abstract: This paper addresses challenges in integrating new languages into a pre-trained multilingual automatic speech recognition (mASR) system, particularly in scenarios where training data for existing languages is limited or unavailable. The proposed method employs a dual-pipeline with low-rank adaptation (LoRA). It maintains two data flow pipelines-one for existing languages and another for new languages. The primary pipeline follows the standard flow through the pre-trained parameters of mASR, while the secondary pipeline additionally utilizes language-specific parameters represented by LoRA and a separate output decoder module. Importantly, the proposed approach minimizes the performance degradation of existing languages and enables a language-agnostic operation mode, facilitated by a decoder selection strategy. We validate the effectiveness of the proposed method by extending the pre-trained Whisper model to 19 new languages from the FLEURS dataset

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com