Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

FastAST: Accelerating Audio Spectrogram Transformer via Token Merging and Cross-Model Knowledge Distillation (2406.07676v1)

Published 11 Jun 2024 in cs.SD, cs.AI, cs.LG, cs.MM, and eess.AS

Abstract: Audio classification models, particularly the Audio Spectrogram Transformer (AST), play a crucial role in efficient audio analysis. However, optimizing their efficiency without compromising accuracy remains a challenge. In this paper, we introduce FastAST, a framework that integrates Token Merging (ToMe) into the AST framework. FastAST enhances inference speed without requiring extensive retraining by merging similar tokens in audio spectrograms. Furthermore, during training, FastAST brings about significant speed improvements. The experiments indicate that FastAST can increase audio classification throughput with minimal impact on accuracy. To mitigate the accuracy impact, we integrate Cross-Model Knowledge Distillation (CMKD) into the FastAST framework. Integrating ToMe and CMKD into AST results in improved accuracy compared to AST while maintaining faster inference speeds. FastAST represents a step towards real-time, resource-efficient audio analysis.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube