Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

MM-KWS: Multi-modal Prompts for Multilingual User-defined Keyword Spotting (2406.07310v1)

Published 11 Jun 2024 in eess.AS, cs.CL, and cs.SD

Abstract: In this paper, we propose MM-KWS, a novel approach to user-defined keyword spotting leveraging multi-modal enroLLMents of text and speech templates. Unlike previous methods that focus solely on either text or speech features, MM-KWS extracts phoneme, text, and speech embeddings from both modalities. These embeddings are then compared with the query speech embedding to detect the target keywords. To ensure the applicability of MM-KWS across diverse languages, we utilize a feature extractor incorporating several multilingual pre-trained models. Subsequently, we validate its effectiveness on Mandarin and English tasks. In addition, we have integrated advanced data augmentation tools for hard case mining to enhance MM-KWS in distinguishing confusable words. Experimental results on the LibriPhrase and WenetPhrase datasets demonstrate that MM-KWS outperforms prior methods significantly.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.