Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Dynamical Mean-Field Theory of Self-Attention Neural Networks (2406.07247v1)

Published 11 Jun 2024 in cond-mat.dis-nn and cs.LG

Abstract: Transformer-based models have demonstrated exceptional performance across diverse domains, becoming the state-of-the-art solution for addressing sequential machine learning problems. Even though we have a general understanding of the fundamental components in the transformer architecture, little is known about how they operate or what are their expected dynamics. Recently, there has been an increasing interest in exploring the relationship between attention mechanisms and Hopfield networks, promising to shed light on the statistical physics of transformer networks. However, to date, the dynamical regimes of transformer-like models have not been studied in depth. In this paper, we address this gap by using methods for the study of asymmetric Hopfield networks in nonequilibrium regimes --namely path integral methods over generating functionals, yielding dynamics governed by concurrent mean-field variables. Assuming 1-bit tokens and weights, we derive analytical approximations for the behavior of large self-attention neural networks coupled to a softmax output, which become exact in the large limit size. Our findings reveal nontrivial dynamical phenomena, including nonequilibrium phase transitions associated with chaotic bifurcations, even for very simple configurations with a few encoded features and a very short context window. Finally, we discuss the potential of our analytic approach to improve our understanding of the inner workings of transformer models, potentially reducing computational training costs and enhancing model interpretability.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com