Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Variational inequalities and smooth-fit principle for singular stochastic control problems in Hilbert spaces (2406.07242v1)

Published 11 Jun 2024 in math.OC

Abstract: We consider a class of infinite-dimensional singular stochastic control problems. These can be thought of as spatial monotone follower problems and find applications in spatial models of production and climate transition. Let $(D,\mathcal{M},\mu)$ be a finite measure space and consider the Hilbert space $H:=L2(D,\mathcal{M},\mu; \mathbb{R})$. Let then $X$ be an $H$-valued stochastic process on a suitable complete probability space, whose evolution is determined through an SPDE driven by a self-adjoint linear operator $\mathcal{A}$ and affected by a cylindrical Brownian motion. The evolution of $X$ is controlled linearly via an $H$-valued control consisting of the direction and the intensity of action, a real-valued nondecreasing right-continuous stochastic process, adapted to the underlying filtration. The goal is to minimize a discounted convex cost-functional over an infinite time-horizon. By combining properties of semiconcave functions and techniques from viscosity theory, we first show that the value function of the problem $V$ is a $C{1,Lip}(H)$-viscosity solution to the corresponding dynamic programming equation, which here takes the form of a variational inequality with gradient constraint. Then, by allowing the decision maker to choose only the intensity of the control and requiring that the given control direction $\hat{n}$ is an eigenvector of the linear operator $\mathcal{A}$, we establish that the directional derivative $V_{\hat{n}}$ is of class $C1(H)$, hence a second-order smooth-fit principle in the controlled direction holds for $V$. This result is obtained by exploiting a connection to optimal stopping and combining results and techniques from convex analysis and viscosity theory.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com