Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

EmoBox: Multilingual Multi-corpus Speech Emotion Recognition Toolkit and Benchmark (2406.07162v1)

Published 11 Jun 2024 in cs.SD, cs.AI, cs.CL, cs.MM, and eess.AS

Abstract: Speech emotion recognition (SER) is an important part of human-computer interaction, receiving extensive attention from both industry and academia. However, the current research field of SER has long suffered from the following problems: 1) There are few reasonable and universal splits of the datasets, making comparing different models and methods difficult. 2) No commonly used benchmark covers numerous corpus and languages for researchers to refer to, making reproduction a burden. In this paper, we propose EmoBox, an out-of-the-box multilingual multi-corpus speech emotion recognition toolkit, along with a benchmark for both intra-corpus and cross-corpus settings. For intra-corpus settings, we carefully designed the data partitioning for different datasets. For cross-corpus settings, we employ a foundation SER model, emotion2vec, to mitigate annotation errors and obtain a test set that is fully balanced in speakers and emotions distributions. Based on EmoBox, we present the intra-corpus SER results of 10 pre-trained speech models on 32 emotion datasets with 14 languages, and the cross-corpus SER results on 4 datasets with the fully balanced test sets. To the best of our knowledge, this is the largest SER benchmark, across language scopes and quantity scales. We hope that our toolkit and benchmark can facilitate the research of SER in the community.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com