Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Topological phase transition in fluctuating imaginary gauge fields (2406.07009v1)

Published 11 Jun 2024 in cond-mat.mes-hall, physics.optics, and quant-ph

Abstract: We investigate the exact solvability and point-gap topological phase transitions in non-Hermitian lattice models. These models incorporate site-dependent nonreciprocal hoppings $J e{\pm g_n}$, facilitated by a spatially fluctuating imaginary gauge field $ig_n \hat~x$ that disrupts translational symmetry. By employing suitable imaginary gauge transformations, it is revealed that a lattice characterized by any given $g_n$ is spectrally equivalent to a lattice devoid of fields, under open boundary conditions. Furthermore, a system with closed boundaries can be simplified to a spectrally equivalent lattice featuring a uniform mean field $i\bar{g}\hat~x$. This framework offers a comprehensive method for analytically predicting spectral topological invariance and associated boundary localization phenomena for bond-disordered nonperiodic lattices. These predictions are made by analyzing gauge-transformed isospectral periodic lattices. Notably, for a lattice with quasiperiodic $g_n= \ln |\lambda \cos 2\pi \alpha n|$ and an irrational $\alpha$, a previously unknown topological phase transition is unveiled. It is observed that the topological spectral index $W$ assumes values of $-N$ or $+N$, leading to all $N$ open-boundary eigenstates localizing either at the right or left edge, solely dependent on the strength of the gauge field, where $\lambda<2$ or $\lambda>2$. A phase transition is identified at the critical point $\lambda\approx2$, at which all eigenstates undergo delocalization. The theory has been shown to be relevant for long-range hopping models and for higher dimensions.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

X Twitter Logo Streamline Icon: https://streamlinehq.com