Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

GraphCoder: Enhancing Repository-Level Code Completion via Code Context Graph-based Retrieval and Language Model (2406.07003v2)

Published 11 Jun 2024 in cs.SE

Abstract: The performance of repository-level code completion depends upon the effective leverage of both general and repository-specific knowledge. Despite the impressive capability of code LLMs in general code completion tasks, they often exhibit less satisfactory performance on repository-level completion due to the lack of repository-specific knowledge in these LLMs. To address this problem, we propose GraphCoder, a retrieval-augmented code completion framework that leverages LLMs' general code knowledge and the repository-specific knowledge via a graph-based retrieval-generation process. In particular, GraphCoder captures the context of completion target more accurately through code context graph (CCG) that consists of control-flow, data- and control-dependence between code statements, a more structured way to capture the completion target context than the sequence-based context used in existing retrieval-augmented approaches; based on CCG, GraphCoder further employs a coarse-to-fine retrieval process to locate context-similar code snippets with the completion target from the current repository. Experimental results demonstrate both the effectiveness and efficiency of GraphCoder: Compared to baseline retrieval-augmented methods, GraphCoder achieves higher exact match (EM) on average, with increases of +6.06 in code match and +6.23 in identifier match, while using less time and space.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: