Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

What's in an embedding? Would a rose by any embedding smell as sweet? (2406.06870v3)

Published 11 Jun 2024 in cs.AI and cs.CL

Abstract: LLMs are often criticized for lacking true "understanding" and the ability to "reason" with their knowledge, being seen merely as autocomplete systems. We believe that this assessment might be missing a nuanced insight. We suggest that LLMs do develop a kind of empirical "understanding" that is "geometry"-like, which seems adequate for a range of applications in NLP, computer vision, coding assistance, etc. However, this "geometric" understanding, built from incomplete and noisy data, makes them unreliable, difficult to generalize, and lacking in inference capabilities and explanations, similar to the challenges faced by heuristics-based expert systems decades ago. To overcome these limitations, we suggest that LLMs should be integrated with an "algebraic" representation of knowledge that includes symbolic AI elements used in expert systems. This integration aims to create large knowledge models (LKMs) that not only possess "deep" knowledge grounded in first principles, but also have the ability to reason and explain, mimicking human expert capabilities. To harness the full potential of generative AI safely and effectively, a paradigm shift is needed from LLM to more comprehensive LKM.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.