Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Validating LLM-Generated Programs with Metamorphic Prompt Testing (2406.06864v1)

Published 11 Jun 2024 in cs.SE and cs.AI

Abstract: The latest paradigm shift in software development brings in the innovation and automation afforded by LLMs, showcased by Generative Pre-trained Transformer (GPT), which has shown remarkable capacity to generate code autonomously, significantly reducing the manual effort required for various programming tasks. Although, the potential benefits of LLM-generated code are vast, most notably in efficiency and rapid prototyping, as LLMs become increasingly integrated into the software development lifecycle and hence the supply chain, complex and multifaceted challenges arise as the code generated from these LLMs carry profound questions on quality and correctness. Research is required to comprehensively explore these critical concerns surrounding LLM-generated code. In this paper, we propose a novel solution called metamorphic prompt testing to address these challenges. Our intuitive observation is that intrinsic consistency always exists among correct code pieces but may not exist among flawed code pieces, so we can detect flaws in the code by detecting inconsistencies. Therefore, we can vary a given prompt to multiple prompts with paraphrasing, and to ask the LLM to acquire multiple versions of generated code, so that we can validate whether the semantic relations still hold in the acquired code through cross-validation. Our evaluation on HumanEval shows that metamorphic prompt testing is able to detect 75 percent of the erroneous programs generated by GPT-4, with a false positive rate of 8.6 percent.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)