In-Context Learning and Fine-Tuning GPT for Argument Mining (2406.06699v1)
Abstract: LLMs have become ubiquitous in NLP and deep learning. In-Context Learning (ICL) has been suggested as a bridging paradigm between the training-free and fine-tuning LLMs settings. In ICL, an LLM is conditioned to solve tasks by means of a few solved demonstration examples included as prompt. Argument Mining (AM) aims to extract the complex argumentative structure of a text, and Argument Type Classification (ATC) is an essential sub-task of AM. We introduce an ICL strategy for ATC combining kNN-based examples selection and majority vote ensembling. In the training-free ICL setting, we show that GPT-4 is able to leverage relevant information from only a few demonstration examples and achieve very competitive classification accuracy on ATC. We further set up a fine-tuning strategy incorporating well-crafted structural features given directly in textual form. In this setting, GPT-3.5 achieves state-of-the-art performance on ATC. Overall, these results emphasize the emergent ability of LLMs to grasp global discursive flow in raw text in both off-the-shelf and fine-tuned setups.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.