Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

SecureNet: A Comparative Study of DeBERTa and Large Language Models for Phishing Detection (2406.06663v1)

Published 10 Jun 2024 in cs.CR, cs.CL, and cs.LG

Abstract: Phishing, whether through email, SMS, or malicious websites, poses a major threat to organizations by using social engineering to trick users into revealing sensitive information. It not only compromises company's data security but also incurs significant financial losses. In this paper, we investigate whether the remarkable performance of LLMs can be leveraged for particular task like text classification, particularly detecting malicious content and compare its results with state-of-the-art Deberta V3 (DeBERTa using ELECTRA-Style Pre-Training with Gradient-Disentangled Embedding Sharing) model. We systematically assess the potential and limitations of both approaches using comprehensive public datasets comprising diverse data sources such as email, HTML, URL, SMS, and synthetic data generation. Additionally, we demonstrate how LLMs can generate convincing phishing emails, making it harder to spot scams and evaluate the performance of both models in this context. Our study delves further into the challenges encountered by DeBERTa V3 during its training phases, fine-tuning methodology and transfer learning processes. Similarly, we examine the challenges associated with LLMs and assess their respective performance. Among our experimental approaches, the transformer-based DeBERTa method emerged as the most effective, achieving a test dataset (HuggingFace phishing dataset) recall (sensitivity) of 95.17% closely followed by GPT-4 providing a recall of 91.04%. We performed additional experiments with other datasets on the trained DeBERTa V3 model and LLMs like GPT 4 and Gemini 1.5. Based on our findings, we provide valuable insights into the effectiveness and robustness of these advanced LLMs, offering a detailed comparative analysis that can inform future research efforts in strengthening cybersecurity measures for detecting and mitigating phishing threats.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.