Papers
Topics
Authors
Recent
2000 character limit reached

Adversarial Tuning: Defending Against Jailbreak Attacks for LLMs (2406.06622v1)

Published 7 Jun 2024 in cs.CL, cs.AI, and cs.CR

Abstract: Although safely enhanced LLMs have achieved remarkable success in tackling various complex tasks in a zero-shot manner, they remain susceptible to jailbreak attacks, particularly the unknown jailbreak attack. To enhance LLMs' generalized defense capabilities, we propose a two-stage adversarial tuning framework, which generates adversarial prompts to explore worst-case scenarios by optimizing datasets containing pairs of adversarial prompts and their safe responses. In the first stage, we introduce the hierarchical meta-universal adversarial prompt learning to efficiently and effectively generate token-level adversarial prompts. In the second stage, we propose the automatic adversarial prompt learning to iteratively refine semantic-level adversarial prompts, further enhancing LLM's defense capabilities. We conducted comprehensive experiments on three widely used jailbreak datasets, comparing our framework with six defense baselines under five representative attack scenarios. The results underscore the superiority of our proposed methods. Furthermore, our adversarial tuning framework exhibits empirical generalizability across various attack strategies and target LLMs, highlighting its potential as a transferable defense mechanism.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.