Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Assessing the Emergent Symbolic Reasoning Abilities of Llama Large Language Models (2406.06588v1)

Published 5 Jun 2024 in cs.CL, cs.AI, cs.LG, and cs.NE

Abstract: LLMs achieve impressive performance in a wide range of tasks, even if they are often trained with the only objective of chatting fluently with users. Among other skills, LLMs show emergent abilities in mathematical reasoning benchmarks, which can be elicited with appropriate prompting methods. In this work, we systematically investigate the capabilities and limitations of popular open-source LLMs on different symbolic reasoning tasks. We evaluate three models of the Llama 2 family on two datasets that require solving mathematical formulas of varying degrees of difficulty. We test a generalist LLM (Llama 2 Chat) as well as two fine-tuned versions of Llama 2 (MAmmoTH and MetaMath) specifically designed to tackle mathematical problems. We observe that both increasing the scale of the model and fine-tuning it on relevant tasks lead to significant performance gains. Furthermore, using fine-grained evaluation measures, we find that such performance gains are mostly observed with mathematical formulas of low complexity, which nevertheless often remain challenging even for the largest fine-tuned models.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube